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A theory is described for the nonlinear waves on the surface of a thin film flowing 
down an inclined plane. Attention is focused on stationary waves of finite amplitude 
and long wavelength at high Reynolds numbers and moderate Weber numbers. Based 
on asymptotic equations accurate to the second order in the depth-to-wavelength ratio, 
a third-order dynamical system is obtained after changing to the frame of reference 
moving at the wave propagation speed. By examining the fixed-point stability of the 
dynamical system, parametric regimes of heteroclinc orbits and Hopf bifurcations are 
delineated. Extensive numerical experiments guided by the linear analyses reveal a 
variety of bifurcation scenarios as the phase speed deviates from the Hopf-bifurcation 
thresholds. These include homoclinic bifurcations which lead to homoclinic orbits 
corresponding to well separated solitary waves with one or several humps, some of 
which occur after passing through chaotic zones generated by period-doublings. There 
are also cases where chaos is the ultimate state following cascades of period-doublings, 
as well as cases where only limit cycles prevail. The dependence of bifurcation 
scenarios on the inclination angle, and Weber and Reynolds numbers is summarized. 

1. Introduction 
The flow of a thin layer of an incompressible viscous fluid down an inclined plane 

is a very old problem in fluid mechanics (Nusselt 1916). Much of the motivation 
for recent research stems from its practical applications in industrial processing. 
It is well known that finite-amplitude waves on film flows are relevant to devices 
such as adsorption columns, chemical reactors, steam condensors and vertical tube 
evaporators, since these waves enhance the transport of mass, heat and momentum 
across the liquid-gas and liquid-solid interfaces. In contrast, the formation of waves 
on the surface of a coating layer is highly undesirable in precision coating (Wang, 
Seaborg & Lin 1978). Therefore, following the pioneering work of Kapitza & Kapitza 
(1949), the literature on waves on a thin sheet of viscous layer is extensive. Since a 
comprehensive survey has been given recently by Chang (1994), we shall only mention 
a few papers to motivate the present study. 

Many experiments on film waves have been reported in the literature. In some of 
them waves generated naturally were observed on a vertical plate (Tailby & Portalski 
1962), or inside a vertical tube with a radius of a few centimetres (Stainthorp & Allen 
1965; Jones & Whitaker 1966; Strobe1 & Whitaker 1969). Wavelength and wavespeeds 
of small-amplitude waves in the inception region were the most commonly measured 
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quantities. In most other experiments efforts were directed towards two-dimensional 
forced waves of finite amplitude (Kapitza & Kapitza 1949 ; Alekseenko, Nakoryakov 
& Pokusaev 1985). Kapitza & Kapitza (1949) generated regular two-dimensional 
waves by applying pulsations at the entrance of flow falling vertically along the outer 
surface of a circular cylinder. They reported that for a weak forcing at high frequencies, 
a train of near-sinusoidal periodic waves occurs downstream. On the other hand, a 
strong low-frequency forcing often generates a series of solitary waves possessing steep 
wavefronts and gently sloping tails, with ripples appearing ahead of the wavefronts. 

Experiments have revealed that the properties of film waves change continuously 
as they propagate downstream, and may evolve into a highly irregular state far 
downstream (e.g. Kapitza & Kapitza 1949; Chu & Dukler 1974, 1975; Liu & Gollub 
1993; Yu et al. 1995). Therefore a complete characterization of the wave field should 
include the spatial and temporal variations of wave amplitude, speed and length (or 
frequency) over a long distance and time, as well as their dependence on physical 
parameters such as the Reynolds and Weber numbers and the inclination angle. 
However, such comprehensive records are as yet unavailable. Most of the previous 
experiments were also conducted on the surface of cylinders of finite radius, rather 
than on a plane, and only over a limited fetch. Perhaps to bypass the difficulty of 
limited fetch, most investigators maintained artificial oscillations with a prescribed 
frequency which often is not the natural frequency of the most unstable mode. For 
example, Kapitza & Kapitza (1949) recorded the amplitude, speed, and wavelength 
of forced waves of a vertically falling water film in a tube for moderate Reynolds 
numbers ( 5  < R < 20) and large Weber numbers (28 < We < 285). The total length of 
the tube was too short (23 cm) for observing interesting bifurcations. Experiments by 
Stainthorp & Batt (1967) were similar. Only Takahama & Kato (1980) and Brauner 
& Maron (1982) described observations of film waves naturally formed on the surface 
film along a vertical cylinder and plate, respectively. Without artificial forcing, they 
showed that film waves always have irregular characters, and exhibit the phenomenon 
of apparent period-doubling (frequency reduction) and growing amplitude along the 
test section (2 and 1.6 m long, respectively). Evidence of chaos is particularly strong 
in the experiments of Chu & Dukler (1974, 1975) on the vertical water films flowing 
rapidly (50 < R < 2000, 0.01 < We < 7) on the surface of a circular cylinder of 5 cm 
diameter. They analysed the statistical properties of the film thickness measured at 
4.17 m below the top. Recently, Liu, Paul & Gollub (1993) and Liu & Gollub (1993, 
1994) used high-precision optical techniques to study the flow development down a 
plane of 2 m length inclined at small angles (4" d 6' d lo") for moderate Weber and 
Reynolds numbers (3 < We < 33 ; 6 < R < 26). Aqueous solutions of glycerin were 
used. Similar to Kapitza & Kapitza (1949), they introduced artificial perturbations of 
varying amplitudes and frequencies at the entrance such that two-dimensional regular 
waves appeared slightly downstream. With measurement accuracy on the order of 
microns for the wave amplitude, they confirmed experimentally the theoretical critical 
condition (1.1) below, derived by Benjamin (1957) and Yih (1963) for the primary 
instability of the uniform flow. I f f  is the forcing frequency and R is the Reynolds 
number, the linear instability region in the f versus R plane is bounded above by 
the neutral curve fn and below by the R-axis (see figures 3a and 17 later). Secondary 
instabilities of these forced waves were also found further downstream. Side-band 
instability occurs when the forcing frequency is relatively large, while period-doubling 
instability ensues when the forcing frequency is relatively small. At even larger 
Reynolds numbers, tertiary instabilities set in and spanwise variations of the free 
surface become significant (Liu, Schneider & Gollub 1995). 
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The theoretical literature can be divided into four categories : (i) linearized stability 
analyses ; (ii) nonlinear theories for low or moderate Reynolds numbers; (iii) nonlinear 
theories for high Reynolds numbers; and (iv) direct numerical computations of the 
Navier-Stokes equations. 

(i) Linearized instability: Yih (1955) was the first to formulate the eigenvalue 
problem based on the Orr-Sommerfeld equation. Benjamin (1957) subsequently in- 
corporated surface tension. They found that the threshold for infinitesmal sine waves 
to be unstable is 

cot 9/R < 615 (1.1) 
where 9 is the inclination angle from the horizontal, and R is the Reynolds number 
defined by the unperturbed depth (HO)  and the depth-averaged velocity (ug) of the 
uniform flow. For sufficiently thin film or long wavelength (L) ,  i.e. E = Ho/L << 1 
and R d 0(1), Yih (1963) gave approximate solutions valid up to O(e2R2).  Additional 
numerical studies of the Orr-Sommerfeld equation have been carried out by many 
(Whitaker 1964; Anshus & Goren 1966; Krantz & Goren 1971; Pierson & Whitaker 
1977) over a wider range of E. See Lin (1983) for a more thorough review. 

(ii) Nonlinear theories for  small R :  Subsequent efforts were focused on the nonlinear 
long waves in flows with relatively low Reynolds numbers: R = O(1). Mei (1966) 
and Benney (1966) derived an evolution equation governing the flow depth, H ,  by a 
perturbation expansion technique in terms of the long-wave parameter c. Omitting 
surface tension, Mei found monoclinal and polyclinal permanent waves, along with 
their amplitude-dispersion relations. Benney further deduced a Landau-Stuart equa- 
tion describing the amplitude evolution of weakly nonlinear waves. Without surface 
tension, the second Landau coefficient turns out to be negative and hence nonlinear 
permanent waves of small-amplitude cannot exist. Three-dimensional extensions of 
this long-wave equation have been derived by Roskes (1970). Studies of the long-wave 
evolution equations with a strong surface tension, We = 0 ( e p 2 )  where We is the Weber 
number defined later in (2.11), constitute the prevailing theme in the literature for 
low Reynolds number flows (Pumir, Manneville & Pomeau 1983; Nakaya 1989; Joo, 
Davis & Bankoff 1991). Other authors have studied the case of weak nonlinearity 
for which theories have been developed on three different bases: (a )  an amplitude 
equation of Landau-Stuart type valid in the neighbourhood of the neutral curve in 
the E versus R plane (Lin 1969, 1974; Gjevik 1970, 1971; Nakaya 1975); (b )  modern 
bifurcation theory applied to weakly nonlinear permanent waves (Chang 1986, 1987, 
1989); and (c )  numerical solutions of the weakly nonlinear version of the long-wave 
evolution equation (the celebrated Kuramoto-Sivashingsky equation). The last ap- 
proach has yielded a rich variety of solutions including limit cycles, homoclinic orbits, 
tori and chaotic attractors (Atherton 1972; Tougou 1981 ; Sivashinsky & Michelson 
1980; Shlang & Sivashinsky 1982; Chen & Chang 1986; Hyman & Nicolaenko 1986; 
Tsvelodub & Trifonov 1989; Demekhin, Tokarev & Shkadov 1991; Trifonov 1992). 
See Chang (1994) for a review. 

(iii) Nonlinear theories for  large R :  Relatively few papers have been devoted to 
nonlinear theories for high Reynolds numbers. Nearly all theories are for long waves, 
where the boundary layer and the momentum integral approximations have been 
applied for analytical convenience. The resulting nonlinear evolution equations are 
nevertheless still very complicated, and hence most studies concentrate on stationary 
(or permanent) waves whose speed and form do not change during the course of 
propagation. Furthermore, as in past studies for small to moderate R, surface tension 
is usually assumed to be large, We = O ( E - ~ ) ,  with the mathematical consequence that 
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the highest derivative appears at the leading order. In order to improve the boundary 
layer approximation, Sheintuch & Dukler (1989) extended the theory for flows down 
a vertical plate to second order O(c2) .  However, a uniform pressure distribution in 
the flow layer was assumed. As will be shown in $2, this approximation amounts 
to inconsistently omitting the O(c2)  terms in the transverse momentum equation. 
They discovered a branch of limit cycles which, as the propagation speed is varied, 
undergo homoclinic bifurcations and eventually become homoclinic orbits. Similarly, 
Prokopiou, Cheng & Chang (1991) applied a second-order theory to flows on a 
nearly horizontal incline, and assumed a hydrostatic pressure distribution in the flow 
layer. With an assumed parabolic velocity profile and Kirman’s momentum integral 
approximation, they used normal form theory to find analytical solutions such as limit 
cycles and homoclinic orbits near neutral stability. Some numerical solutions were 
obtained for fully nonlinear permanent waves, which include limit cycles followed 
by period-doubling bifurcations. Also for R = O(e-’) and We = O(F-~), Trifonov 
& Tsvelodub (1991) and Tsvelodub & Trifonov (1992) searched numerically for 
permanent waves of the leading-order system on a vertically falling flow and found 
only periodic and solitary waves. Recently, Chang, Demekhin & Kopelevich (1993) 
solved an approximate Navier-Stokes system valid up to O(co) for film flow on a 
vertical plate. Without invoking Karman’s approximation they discretized the flow 
depth and used spectral Fourier expansion in the flow direction. For waves of finite 
periods they constructed infinitely many branches of solutions which include limit 
cycles and multiple-hump homoclinic orbits, parameterized by the wavenumber and 
propagation speed of the waves. They discussed evolution processes on the free 
surface suggested by the stability of these two-dimensional waves in the presence 
of streamwise and spanwise perturbations. Since these numerical theories demand 
that the computational domain be finite, no chaotic waves, which are aperiodic by 
definition, were found. 

Most recently, Yu et al. (1995) reported a revised second-order boundary layer 
theory on a plane, and new experiments on a circular cylinder, for vertically falling 
water films in the range R = O(6-l) and We = O( 1). In the theory they corrected the 
leading-order approximation of Sheintuch & Duckler by adding a centripetal force in 
the transverse momentum equation. The new term was however inserted by assuming 
that the curvature term in the boundary layer near a curved wall in an infinite fluid 
is equivalent to the curvature of the film thickness here. This heuristic correction 
is incomplete in that it discounts other second-order terms. Based on this revision 
numerical solutions of stationary waves show the eventual predominance of chaotic 
waves as the propagation speed was varied from the Hopf-bifurcation threshold. 
Statistical properties of these chaotic waves including the probability distribution of 
film thickness, the mean wave speed, and the RMS of film thickness were compared 
with the experimental observations at 2 m below the entrance of the test tube. 

(iv) Numerical solution of the full Navier-Stokes equations: All of the numerical the- 
ories in this category are restricted to relatively small Reynolds numbers. For instance, 
Bach & Villadsen (1984) treated the transient problem of a vertically falling flows in 
the range of 2.5 < R < 25 by solving the Lagrangian form of the Navier-Stokes equa- 
tions by finite elements. They found stationary solitary waves emerging at large times. 
Similarly, Kheshgi & Scriven (1987) used finite elements to obtain stationary periodic 
and solitary waves along a vertical plate only for R < 10. Salamon, Armstrong & 
Brown (1994) also obtained numerical solutions for periodic and solitary waves on 
a vertical plane, for R < 20; their numerical constructions matched favourably with 
experimental observations by Kapitza & Kapitza (1949) on a vertical cylinder. In com- 
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FIGURE 1. Definition sketch. 

parison to the leading-order long-wave approximation of Chang et al. (1993), their 
results begin to be different only when the wavenumber E becomes relatively large. 

From the brief survey above, it is clear that more information is needed on pos- 
sible bifurcations that may happen far downstream, especially in the regime of high 
Reynolds numbers R = O(c-') and small-to-moderate surface tension We = O( 1). To 
examine the dependence of bifurcations on all relevant physical parameters, direct 
numerical solution of the transient Navier-Stokes equations is of course desirable, 
but appears to be a formidable task. In this paper we describe an approximate theory 
accurate to order O(f2), without the assumption of hydrostatic pressure. Karman's 
momentum integral method is again used. Linearized stability analysis of the uniform 
primary flow to sinusoidal perturbations is carried out first and the predictions are 
compared with known measurements of small-amplitude waves in the inception re- 
gion. We then study permanent wave by analysing the linearized instability of the fixed 
points and Hopf bifurcation. Finally numerical integration of the dynamical system is 
carried out to reveal many different bifurcation scenarios, some of which lead to chaos. 

2. Approximate governing equations 
We consider the two-dimensional flow of a thin layer of an incompressible New- 

tonian fluid down an inclined plane. Let H denote the flow depth, and 8 the angle 
of inclination of the plane bottom with respect to the horizon. The full range of 
inclination is allowed so that 0 < 8 d n/2. A rectangular coordinate system as shown 
in figure 1 is chosen in which the x-axis coincides with the plane bottom. 

With the velocity components denoted by u,v, and pressure by P ,  the standard 
Navier-Stokes equations must be supplemented by the following boundary conditions. 
On the plane sloping bottom, y = 0, the velocity components vanish. On the free 
surface y = H ( x ,  t) ,  the kinematic boundary condition requires that fluid particles 
can only move tangentially. The dynamic influence of air above is ignored so that 
tangential and normal stresses must vanish on the free surface. The effect of surface 
tension is included. 
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For reference we recall the classical solution for the uniform flow 

where g is the gravitational acceleration, v the kinematic viscosity of the fluid, and 
HO the unperturbed flow depth. The corresponding depth-averaged velocity is 

g sin eHo2 
3v 

uo = 

and the volume discharge is 

Qo = UOHO. (2.3) 
For normalization we choose the scales based on the primary flow as follows: 

x L, (y,H) : Ho, u : UO, u : uoHo/L, t : L/%, P : 

where L will be associated with the characteristic wavelength. The film is assumed 
to be so thin that the ratio E = Ho/L is small. In normalized variables without 
distinguishing symbols, the Navier-Stokes equations read 

(2 .4)  u, + V y  = 0, 

sin8 E 1 
F2e R RE 

1 COSQ E 1 

U t  + UU, + U U y  = -P, + - + -Uxx + - u y y ,  

V f + U U ,  + U V ,  = --P - - € 2  Y f q E 2  + - V x x  R + -0yy .  RE 
The kinematic boundary condition on y = H is 

Ht + uH, = V .  (2.7) 

The stress conditions on the free surface are 

€ 3  

R (1  + E ~ H , ~ ) ~ / ~  R 
+ -u,H, = 0, E WeE2Hxx P + -(u,HX - ~ v Y )  + 

We Re3 H,, H, 
(1 + $Hx2)3 /2  = O. uy + REPH,  + e2(u, - 2u,H,) + 

The no-slip boundary condition at the bottom y = 0 is 

u = v = o  (2.10) 

In equations (2.5)-(2.9), the dimensionless parameters are 

(2.11) 1 
E = Ho/L 

F = U O /  (gHo)”2 

R = U ~ H ~ / V  = g sin e ~ ~ ~ / 3 v ~  

We = T/pHouo2 = 9v2 T/pg2sin 62H05 

ratio of depth to wavelength, 

Froude number, 

Reynolds number, 

Weber number, 

where T denotes the surface tension coefficient. Note that F and R are related by 
F2 = RsinQ/3. 

implying that surface tension is of leading-order importance in (2.8).  In table 1, we 
list the physical properties of several common liquids. Based on these values the 

In most past works surface tension is assumed to be strong such that We = 
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Water 15°C 0.999 0.0114 73.5 
Glycerine 20°C 1.26 12.16 63 
Glycerinewater (50%) 22°C 1.13 0.052 69 
Ethyl alcohol 20°C 0.7893 0.0152 23.04 
Mercury 20°C 13.5462 0.001 147 472 

TABLE 1. Physical properties of certain liquids 
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FIGURE 2. Weber number We versus Reynolds number R for common fluids 

listed in table 1. (a) 0 = l", and ( b )  0 = 10". 

Reynolds and Weber numbers are plotted against each other in figure 2 for two 
different inclinations 6' = 1" and 6' = lo". It is evident that for a wide range of 
situations, the Reynolds number is large, while the Weber number is small. Therefore 
in this work we shall assume 

R = O(~/E) ,  We = O(1). (2.12) 

Thus our results should complement existing theories on large Reynolds number 
flows R = O(e-l) with strong surface tension W = O ( E - ~ )  (Prokopiou et al. 1991; 
Trifonov & Tsvelodub 1991; Tsvelodub & Trifonov 1992; Chang et al. 1993), as 
well as theories for small Reynolds number flows R = O( 1) with either strong surface 
tension We = O(ec2) (Pumir et al. 1983; Chang 1986,1987; Nakaya 1989) or moderate 
surface tension We = 0(1) (Nakaya 1975; Chang 1989). 
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Keeping all terms up to 0(f2),  we get from (2.4)-(2.6), 

u, + 0, = 0, (2.13) 

1 3 E  
RE R RE ut + uu, + vu, = -P, + - + -u, + -uyy, 

2 3cot8 E 
€ (0, + uv, + vv,)  = -Py - - R + j p Y Y ,  

(2.14) 

(2.15) 

and from the dynamic boundary conditions (2.8) and (2.9), 

uy + R E P H ,  + e2(vx - 2u,H,) + W,RE~H, ,H,  = 0 (2.17) 

on y = H .  The kinematic boundary conditions (2.7) and (2.10) remain unchanged. 
In their study of high surface tension films, Sheintuch & Duckler (1989) and 

Prokopiou et al. (1991) kept terms of O(r2)  in the x-momentum equation. However, 
in the y-momentum equation, they assumed the pressure to be hydrostatic (or uniform 
if the wall is vertical), which amounts to omitting terms of 0(e2) .  For consistency, 
0 ( c 2 )  terms in all governing equations and boundary conditions should be kept. 
In Yu et al. (1995) these terms were simply replaced by pHxxu2, which cannot be 
theoretically deduced. 

Because of the convective nonlinearity, the system (2.13)-(2.17) is highly nonlinear 
and analytical solution appears infeasible. We follow Kapitza & Kapitza (1949) and 
apply the approximate momentum integral method of Kirman. As in earlier works 
by them and by Prokopiou et al. (1991), the parabolic velocity profile (2.1), which is 
the exact solution for the uniform primary flow, 

(2.18) 

will be assumed, where Q(x,t), the local flow rate, and H ( x , t ) ,  the local flow depth, 
are now regarded as two unknowns. It should be remarked that, despite its success in 
classical boundary layer theory, the accuracy of Karman’s method is hard to assess 
a priori. We shall only check the result in the linearized limit, as was done in Yu 
et al. (1995) who compared the numerical solution of their approximate equations by 
assuming a fifth-order polynomial velocity prifile. With (2.18) the two approximate 
stress boundary conditions (2.16) and (2.17) on the free surface can be further 
simplified to 

2 E 
P = -221, R - Wee H,,, y = H  (2.19) 

and 

uy = e2(4u,H, - u,), y = H .  (2.20) 
The velocity component in the y-direction is readily obtained by integrating the 
continuity equation (2.13), and applying the no-slip boundary condition (2.10) for u : 

u =  ($-%)y’- ( g - T ) y 2 ,  O G y d H .  (2.21) 

The pressure distribution in the flow layer can be deduced by integrating the y- 
momentum equation (2.15) with respect to y from 0 to H ,  and applying the normal 
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stress boundary condition (2.19). The result is 

QQxx Qx2  3HxQQx +--- 5HtQx 3HQtx 
20H 8 8 

+-+ 
2 

Qtx HxQt + 3HtHxQ 
H 4  %f?) y 3  

+ S) Y 4  
3HxQt 9HxxQ2 9Hx2Q2 3HtHxQ 

2 ~ 5  
+--- +-- 

8H4 4H5 4H6 

3Qx2 3HxQQx 
4H5 20H6 5H6 

QQxx Qx2 3HxxQ2 _ _ _ - _ _ - ~  
+ ( 8 H 6  8H6 8H7 8H8 

R 2 ~ 4  

Note that the pressure distribution is hydrostatic only if all terms of 0(r2 )  are omitted. 
Integrating the approximate equations for continuity and the x-momentum with 

respect to y over the entire flow depth from y = 0 to y = H ,  and making use of the 
boundary conditions and the assumed velocity profile for u and v, we obtain a pair 
of equations for Q and H .  From the continuity equation (2.13), we have 

Q x  + Hi = 0. (2.23) 

Similarly, from the integrated x-momentum equation (2.14) one gets 

6HxQ2 3HtQ + 3cot8HHx 3Q 3H +--- 
10H 5H 2H R H2Re  RE + Qt - 7 - .- 9QQx 

107HQQxxx - 11H2Qtxx + 87Q2Hxxx 
+ € 2  [--w,HH,, - 280 40 140 

(2.24) 
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Equations (2.23) and (2.24) are two nonlinear partial differential equations describing 
the temporal and spatial evolution of Q and H .  

3. Instability to sinusoidal waves 
For checking with experiments and for later reference we sketch the standard 

analysis on the instability of the uniform flow ( H  = Q = 1) when disturbed by an 
infinitesimal wavy disturbance. Let h and q denote infinitesimal disturbances from 
the uniform flow, i.e. 

we get upon linearization of (2.23) and (2.24) and elimination of q, 
H = l + h ,  Q = 1 + 4 ;  (3.1) 

3 cot 8 6 ~ .  9 E  

2R 
12 3 9 6 

-ht + -hx + -hxx + -htX + h,, - Re RE 5 5 R R hxx - - h, - - htn 

Consider a wave-like disturbance 

(3.3) h rv ei(x-ct) 

This implies that the normalizing length L is chosen to be the reciprocal of the 
wavenumber in physical dimensions: k-'. Therefore E in (3.2) is just kHo. By sub- 
stituting (3.3) into (3.2), a characteristic equation for the complex phase velocity 
c = c, + ici is found: 

c 

2 9 . 66. 6 3cot8 87 -_ 1 - -1 + - - ~ + -€ - W e €  =O.  
RE R 5 R 140 (3.4) 

Of the two solutions to this quadratic equation with complex coefficients, one corre- 
sponds to a stable mode, while the second mode is potentially unstable. The growth 
rate and phase velocity of the potentially unstable mode can be easily found. 

By setting ci = 0 in (3.4) and eliminating c, from the real and imaginary parts of 
this complex equation, the threshold for neutral stability is obtained: 

c2 (1 1e2 + 40) R 

On the plane of (R/ cot 8) versus E, there are three branches of neutral curves. Two 
of them are trivial: the (Rlcot Q)-axis and the €-axis. The third is given by 

-- - 1 + -we + - € 2 + 0 ( € 4 ) .  
cot 6 (; :") 

Between the neutral stability curve (3.6) and the (R/ cot O)-axis, the primary flow 
is unstable. Surface tension is seen to reduce the region of instability and hence to 
stabilize the primary flow. In the region of instability, the fastest-growing waves can 
be found by solving dci /& = 0. At = 0, which corresponds to disturbances of 
infinitely long waves, the condition for instability becomes 

cot 8 
~ < 1. 

R (3.7) 
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FIGURE 3. Comparison of linear theories with experimental measurement of small-amplitude ripples 
in the inception region. (a) Neutral stability curve (-, theory; 0, expt. by Liu & Gollub) and 
fastest-growing waves (- -, theory; 0, expt. by Liu & Gollub) for aqueous solutions of glycerine 
(54 % by weight) down an incline (0 = 6.4"). ( b )  Wavespeeds in the inception region for vertically 
falling water films: -, our theory; - -, theory by Pierson & Whitaker; - - -, theory by Krantz 
& Goren; 0, expt. by Jones & Whitaker; 0, expt. by Stainthorp & Allen; A, expt. by Strobe1 & 
Whitaker. (c )  Wavenumbers in the inception region for vertically falling water films: +, expt. by 
Tailby & Portalski. Other symbols as for (b) .  

Throughout this paper we shall call the regime defined by (3.7) the regime of 
SW(sine-wave)-instability. This threshold value is numerically different from the more 
accurate result (1.1) of the Orr-Sommerfeld analysis for a small Reynolds number 
flow. Comparisons of (3.6) and the most unstable waves with one set of exper- 
iments by Liu & Gollub (1993) are shown in figure 3(a), where for convenience 
the wavenumber E has been converted to the physical frequency f in Hz. (In di- 
mensional form, the physical frequency f in Hz is related to the wavespeed c and 
wavelength 1 / ~  by f = ~c,/(2nHO/uo)). At low Reynolds numbers there is some 
discrepancy due probably to our momentum integral approximation. The agree- 
ment becomes much better for larger R. In figures 3(b) and 3(c), we also compare 



202 J.-J. Lee and C. C. Mei 

our theoretical predictions (solid curves) of the phase velocity and wavenumber 
of fastest-growing waves with those experimentally observed near the inception re- 
gion for vertically falling flows of water at R < 100 (Jones & Whitaker 1966; 
Stainthorp & Allen 1965; Strobe1 & Whitaker 1969, all for a circular tuble; and 
Tailby & Portalski 1962 for a plane). Here we follow the custom in the litera- 
ture and compare the theory for a plane with experiments for a tube of a few 
centimetres in diameter. Also shown in the figure are approximate solutions from 
the momentum integral form of the Orr-Sommerfeld equation by Krantz & Goren 
(1971) and from direct numerical solutions of the Orr-Sommerfeld equation by 
Pierson & Whitaker (1977). As seen in this figure, the agreement between the- 
oretical predictions and experimental measurement is quite reasonable. Thus the 
consistent second-order theory with Khrman's approximation is supported by ex- 
periments in the parametric domain of interest, at least for small-amplitude distur- 
bances. 

In the remainder of this paper only nonlinear stationary waves are considered. 

4. The governing equation for stationary waves 
It is convenient to transform the approximate system (2.23) and (2.24) to the 

moving coordinate system defined by t = E - ~ ( x  - c t).  Equation (2.23) can be used to 
eliminate the local flow rate Q from (2.24), yielding a third-order ordinary differential 
equation for the flow depth H :  

9c2 23c(c - 1) H3 - 87(c - ')'H'] 
56 140 

WeH3 - -H4 + 
Hcer [ 140 

3 1 :  R 
1 3c 

+EHty [ -2H2+6(c  - l )H + -6(c- 1)Hc2+ -(H-1)(H2+H + 1 -c) =O. (4.1) 

We have assumed that the primary flow, H = 1 and Q = 1, is approached either far up- 
stream, 5 = -00, or far downstream, 5 = 00. Note that a coordinate renormalization? 
has been introduced so that the highest-order derivatives appear at the leading order 
in E .  By this normalization, the new horizontal length scale is now the primary flow 
depth Ho. Consequently the parameter E is no longer present, though 1/R = O(E) .  By 
introducing new state variables 

- - - 
H = Hc, H = Hct (4.2) 

(4.1) can be converted into a three-dimensional dynamical system 
- 

, (4.3) 
dH - dH = d Z  - P(H,H,Z;cotO/R,R,c) 
d5 

-- - 
-H,  D(H; we,~)  d t  

-- - H, 

If q = x - ct is used instead of 5 ,  it can be shown that the terms associated with 
Hssr, H:, HsHss ,  H c ~ ,  Hc2 are of 0 ( e 2 )  higher than the remaining terms in (4.1). 
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+ - H 2  - - (c  - + - H 2  + - (c - 1)2 H 

I - =  11 87 [;' 40 70 
+ - H 3  - -c(c - 1)H2 - - (c  - 1)2H H H 

- 6(c - 1)H)F + 6(c - [(H - 1)(H2 + H + 1 - c)] (4.4) 

and 

Physically H corresponds to the flow depth, A to the surface slope, and ?? to the 
surface curvature. Note that F depends on physical parameters c,8 and R, while D 
depends on c and We. 

The fixed points can be found by equating the right-hand side of (4.3) to zero, i.e. 
- - - 

H = 0, H = 0, (H - 1)(H2+H + 1 - c )  = 0, (4-6) 

HI ( H ,  R, E) = (I,o,o) (4.7) 

which gives two solutions 

and 

Note that these two fixed points are independent of 8, R and We. The first fixed point 
HI corresponds to the uniform primary flow. The second fixed point HI1 varies as 
a function of c, and remains real and positive only for c > 1. This second uniform 
flow cannot exist by itself for all t> and can only be an asymptotic part of a non- 
uniform profile advancing at the speed c > 1. At c = 3, HI and HII  cross each 
other, suggesting a transcritical bifurcation at which the two fixed points exchange 
their stability properties. Since c alone determines the number of fixed points in (4.3), 
it will be treaterd as the bifurcation parameter for chosen values of other physical 
parameters. 

5. Singular planes in the phase space 
One type of solution that can be of interest is a heteroclinic orbit connecting 

the two fixed points in the three-dimensional phase space (H,A,z).  For this to be 
possible the upstream fixed point must be unstable and the downstream fixed point 
stable. Moreover, there must be no singularity separating the fixed points in the phase 
space. At the present order of approximation, singularities exist when the coefficient 
of in (4.1) vanishes; or, equivalently, at the zeros of the denominator D in (4.5). 
In principle these singularities can be removed by extending the approximtion to 
a higher order, or by avoiding stationary waves and solving initial-boundary value 
problems numerically. We shall however identify the singularities and examine the 
consequences of our approximation away from them. Since D involves only one state 
variable H ,  these singularities are infinite planes normal to the H-axis in the phase 
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FIGURE 4. Singular planes, HJ') and Hi'), and two fixed points, HI and H I I ,  versus c. 
(a) We = 0.8, (b)  We = 0.65, (c) We = 0.4, and (d )  We = 0.025. 

space. One of these planes is simply H,') = 0, corresponding physically to a dry bed. 
Two others depend only on the physical parameters c and We:  

[We + 23c (c - 1) /56] f { [We + 23 (c - 1) c/56] - 783 (c - 1)2 ~ ~ / 4 9 0 0 } ~ ' ~  

Hi2) (9/70) c2 
(5.1) 

In figure 4 typical curves of H!') (dotted lines) and H!2) (long-dashed lines) are plotted 
as functions of c, for several sample values of We. Curves representing the two fixed 
points, HI and Hrr,  versus c are also shown. From the marked points of intersection 
where the singularity coincides with either one of the two fixed points, the range of 
c over which the two fixed points lie on the same side of the singular plane in phase 
space can be delineated. Thus for a large enough We, say We = 0.8, the range of c 
for the likely occurrence of smooth heteroclinic orbits lies between %? (where c = 1)  
and (see figure 4a). For a slightly smaller We (=0.65), there are two such ranges 
of interest including %? - 9? and € - B (see figure 4b). For a still smaller We(=0.4) 
(see figure 4c), the ranges are %? - 6 and 9? - 9. For a very small We (=0.025) (see 
figure 4d), there is only one such range in 9? - 9. 

In the We versus c plane the parameter regions where none of the singular planes 
intrude between HI and HII in the phase space can be found from the trajectories of 

HP 1 = 
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FIGURE 5. Singularity boundaries in the We versus c plane, where d and 98 are for H I ,  and W, 8, 
.F and 9 are for H I I .  In the shaded regions heteroclinic orbits are possible. 

the intersection points between HI and Hic') (or Hi2)),  and between HII and Hic') (or 
Hi')). Such trajectories, which constitute the boundaries of the zones of interest, are 
found by substituting the fixed point formulas of HI and I f I I ,  i.e. (4.7) and (4.8), into 
(4.5). Specifically for the first fixed point HI,  the trajectory is given by Dl(c,  We) = 0, 
where 

11 233 87 
40 280 140 

D1 (c, We) = We - -c + -c - -. 
This is represented by two singularity branches JL? and 93 of a parabola in the We 
versus c plane as shown by the solid curve in figure 5. Similarly, for the second fixed 
point HII, the trajectory is given by &(c, We) = 0, where 

D2 (c, We) = We (c (4c - 3)lI2 - 3c + 2) 

41 87 
280 280 70 140 

+ (4c - 3 p 2  (151 -c3+-c --c+- 

9 99 209 463 87 
70 40 40 140 140 c --c +-c ---c+-, (5.3) -- 

which gives rise to four singularity branches V, Q, 9 and 3 as represented by the 
long-dashed curves in figure 5. In accordance with figure 4, the parameter regions 
in the We versus c plane where the singular planes do not lie between the two fixed 
points are shaded in figure 5. As We decreases towards zero, there are three points 
of intersection of these singularity branches : Wil)(= 0.7072) where the singularity 
branches 6 and 9 coalesce, Wd2)(= 0.6) where the singularity branches and 8 
intersect and WL3)(= 0.03515) where the singularity branches a? and 6 intersect. 
These points divide the We line into four regions. The last region is too small to be 
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of practical interest; in any event to consider such cases of small surface tension one 
would need to include other higher-order terms so far neglected in our theory. 

We now examine the linearized instability of two fixed points HI and HII  in each 
range of We. 

6. The eigenvalue equation for fixed-point stability 
Let 

H = H * + h  

where H’ represents a fixed point and h the perturbation. Upon linearization of (4.3) 
for infinitesimal h, we get 

1 
= J h  with J = 0 

dh 

d5 
- 

where J is the Jacobian matrix. For the first fixed point H I ,  the p-coefficients are 

(6.2) 
i c - 6  c2 - + f - (3 cot 8)/R 3 (3  - c )  

D1 (c, We)’ 
7 P 3  = 

DI(c, We) 
P 2  = 

P1 = D1 (c, We)’ 

where Dl(c, We) is given by (5.2). For the second fixed point H I I ,  the /?-coefficients are 

y c  (4c - 3)112 - 6 (4c - 3)1/2 - 3c2 - i c  + 6 

~ c ~ ( ~ c - ~ ) ~ ’ ~ - ~ c ~  5 + y c 2 - y c +  + [(cotB)/R] ( - 3 c ( 4 ~ - 3 ) ~ / ~ + 9 ~ - 6 )  

3 4c - 3 - 3 (4c - 3)112] 

D2 (c, We) 
P1 = , 

6 2  = 

P 3  = 

where D2(c, We) is given by (5.3). 

7 ,i 0 2  (c, We) 

D2 (c, We) 
[ 

(6.3) 

The characteristic equation for the eigenvalue A of the Jacobian matrix J is 

1 3 + - a  P1 2 + p 2 a + - = o  P 3  

R R 

whose solutions determine the stability and type of the fixed point. Exact but lengthy 
formulae are available for the solutions of this cubic equation, but much insight can 
be gained from the perturbation solutions in terms of the small parameter R-’ = O(r) ,  

From the approximate solution (6.5), if P 2  > 0, A2 and 23 are complex and the 
fixed point is a saddle-spiral. If /?2 < 0, 1 2  and A3 are real and the fixed point is a 
saddle-node. This approximate solution (6.5) is useful unless /?2 = 0, or in the vicinity 
of a singularity where D1 or D2 vanishes. In the former case numerical solution of 
(6.4) is needed. 
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7. Hopf-bifurcation thresholds 
From (6.4) and (6.5) we can directly search for the Hopf-bifurcation thresholds, 

which mark the first appearance of limit cycles, or periodic solutions. This threshold 
occurs when the fixed point possesses a pair of purely imaginary eigenvalues and 
a negative real eigenvalue. Therefore, the characteristic equation (6.4) must take the 
form 

(A2 t a)(A + b)  = 0 (7.1) 
with both a and b being real and positive. By direct comparison between (6.4) and 
(7.1), the following conditions for the threshold of the Hopf-bifurcation are obtained: 

P 1 P 2  = P 3 ,  8 1  > 0, P 2  > 0 ( 7 4  

in which the first inequality assures that the real eigenvalue remains negative, while 
the second assures that a pair of complex-conjugate eigenvalues exist. In view of 
(6.2) and (6.3) for the P, (7.2) depends only on three parameters, We, c and cot Q/R. 
Alternatively, we can arrive at (7.2) from the approximate solutions for eigenvalues 
given by (6.5). Furthermore, for H I ,  the first condition of (7.2) correponds to the 
condition for neutral stability of the primary flow disturbed by infinitesimal waves, 
as can be readily proved by setting c, = 0 in (3.4). However, it should be cautioned 
that not every neutral curve gives rise to a Hopf bifurcation, unless the second and 
third conditions of (7.2) are also satisfiled. 

In the regime of SW-stability, cotQ/R > 1, the inequality conditions in (7.2) 
are never satisfied. As a result, no Hopf-bifurcation threshold is found for either 
fixed point. In the regime of SW-instability, 0 < cotB/R < 1, we first plot in 
figure 6 the two curves c- and c+ along which f l 2  = 0 for the first and second 
fixed point respectively. To see the effects of surface tension, we display also the 
Hopf-bifurcation thresholds corresponding to PlP2 = P 3  for We = 5, 0.65. and 0.3. 
For the first fixed point HI the Hopf threshold always lies in the range c- < c < 
3. On the other hand, for the second fixed point HII  the Hopf threshold occurs 
only in the range 3 < c < c+. For a sufficiently large We, say 5, the thresholds 
for both fixed points (long-dashed lines) span the entire regime of SW-instability, 
0 6 cot % / R  < 1, and converge towards the point of neutral stability at cot O/R = 1 
and c = 3. On the other hand, for a relatively small Weber number, say 0.65, the 
threshold of the second fixed point HI1 breaks into two separated segments: one 
in the range 0 < cotQ/R < (cotQ/R): (= 0.590) with the right end falling on the 
curve c+, and the other in the range (cotQ/R)L(= 0.940) < cotB/R < 1 with the 
left end falling on the curve c+ and the right end approaching neutral stability (this 
segment is too close to c+ to be seen in figure 6a). If the Weber number is further 
decreased to 0.3, there is only one short threshold segment (the dash-dotted curves) 
for each of the two fixed points with their right ends retreating along either c- to 
(cotB/R)- = 0.546 or c+ to (cotQ/R)’; = 0.219 away from the point of neutral 
SW-stability. 

The preceding numerical findings for the Hopf-bifurcation thresholds suggest that 
the Weber number must exceed a certain minimum for a Hopf bifurcation to occur 
at a fixed cotQ/R. These minima can be obtained by demanding that the Hopf- 
bifurcation threshold curve intersects either c- for the first fixed point HI or c+ 
for the second fixed point HII at each cotQ/R. Equivalently, we require that the 
numerator of p2 vanishes while at the same time f l I P 2  = f i 3 .  However, since /33 is 
always finite and positive whenever j j 2  = 0, as can be readily proved from (6.2) and 
(6.3), the denominator of P 2  , which is the common denominator for all the f l ,  must 
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FIGURE 6. (a) Hopf-bifurcation thresholds for different Weber numbers. For H I ,  the thresholds occur 
in c- < c < 3; for H I I ,  they exist in 3 < c < c+. (b)  Minumum Weber number for Hopf bifurcations. 

be zero. Consequently, by setting both the denominator and numerator of fi2 to zero 
simultaneously, the minumum Weber number is obtained and plotted as a function 
of cot 8/R in figure 6(b), and obviously is a result of the appearance of singularities 
(see figure 5 )  in the range c- < c < c+. 

For the first fixed point H I ,  the minimum Weber number decreases monotonically 
from = 0.6 at neutral stability, cot8/R = 1, towards a small yet non-zero value, 
0.00052, at cot 8/R = 0 for a vertically falling film. Therefore, whenever We > 3/5, 
a Hopf-bifurcation threshold can occur in the whole regime of SW-instability. On 
the other hand, whenever We < 3/5, say We = 0.3 shown as the lower horizontal 
dotted line in figure 6(b), only in the regime 0 < cotQ/R d (cot8/R)- is a Hopf 
bifurcation possible. 

For the second fixed point H I I ,  however, the minumum Weber number curve is no 
longer monotonic when We 2 3/5 = Wj2J or as long as 0.51742 < cot B/R < 1. The 
maximum of We is just WilJ = 0.7072, occurring at approximately cot 8/R = 0.75. 
Thus whenever Wj2) < We < We('), say We = 0.65 shown as a horizontal dotted line 
in figure 6(b), there exists a regime, (cot 8/R)T(= 0.590) < cot B/R < (cot O/R)'+(= 
0.940), in which no Hopf bifurcation can occur, verifying the results for the Hopf- 
bifurcation thresholds in figure 6(a). The minimum Weber number for the second 
fixed point at cot 6/R = 0 is calculated to be approximately 0.023. 
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Since Hopf bifurcations lead to limit cycles, we conclude that a small amount of 
surface tension must be present in order for periodic solutions to arise from the 
uniform flow. This is similar to the finding of Lin (1969) who, based on an amplitude 
equation of Landau Stuart type, showed that for R = O(1) no supercritically stable 
small-amplitude periodic waves are possible if the Weber number is zero. Benney 
(1966) reached similar conclusions from a long-wave evolution equation at low 
Reynolds numbers R = O( 1). 

8. Stability properties of the fixed points in the parameter plane of cot O/R 
versus c 

In order to help anticipate the variety of numerical solutions to be studied in 49, we 
shall examine the stability properties of the fixed points together with the positions of 
the singularities in the parameter space of We, R, c, and cot O/R. From the analysis so 
far, the following general conclusions on the properties of the eigenvalues can already 
be drawn. 

(i) As seen from the fixed-point formula (4.7) and (4.8) and the approximate 
eigenvalue solution (6.5) for ill, whenever c crosses 3 for any Weber and Reynolds 
numbers, and the inclination angle, one of the real eigenvalues of the fixed point 
changes sign. This is a universal feature of transcritical bifurcation. 

(ii) As seen from the characteristic equation (6.4), when a fixed point approaches 
the singular plane, i.e. D1 = 0 for HI or D2 = 0 for H I I ,  one of its real eigenvalues 
approaches positive infinity on one side of the singularity, and negative infinity on 
the other. 

(iii) As seen from (6.5) and (7.2), when the Hopf-bifurcation threshold is crossed 
by varying c for a fixed We and cotO/R, the fixed point changes from a stable 
saddle-spiral (ill < 0,Re(i12,A3) < 0) to a saddle-spiral with unstable plane focus 

In the parameter plane, the boundary separating saddle-spirals from saddle-nodes 
(21 < 0, Re(A2,13) > 0). 

must correspond to the double root of (6.4), which occurs at 

As R -+ 00, (8.1) becomes p2 = 0, consistent with the perturbation solutions of (6.5). 
Except for (8.1), which involves four independent parameters (We, 8, R, c), the Hopf- 

bifurcation thresholds and the singularity boundaries where D I  for HI or 0 2  for H I I  
vanish are functions of only three parameters (We, cot 8/R, c). 

We shall only discuss the eigenvalue behaviour of two fixed points for We > WiI); 
similar and lengthier discussions for lower surface tension are presented elsewhere 
(Lee 1995). From (6.4), the eigenvalues of the fixed points are computed for various 
domains of the cot8/R versus c plane for a typical Weber number and Reynolds 
number. The qualitative properties of the eigenvalues are indicated by their locations 
in the complex plane. For clarity, the two fixed points are separately presented. Based 
on these calculated eigenvalue properties, we may anticipate two types of continuous 
orbits in certain parts of the cot 8/R versus c plane. The first type is a heteroclinic 
orbit connecting the two fixed points., either from HI to HII  or from HII  to HI as 
long as any one of the singular planes does not lie between the two fixed points. 
The second type is an oscillatory orbit emerging from a limit cycle around the fixed 
point HI (or HI, )  via Hopf bifurcations. As the bifurcation parameter c departs from 
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FIGURE 7. Eigenvalue behaviour of fixed points for We = 1, R = 1/0.075. (a) H I ,  (b )  HII .  

The shaded areas are regions of heteroclinic orbits. 

the Hopf threshold, the limit cycle bifurcating from HI (or H I I )  may grow in both 
amplitude and wavelength and possibly undergo further bifurcations. The phase orbit 
may be affected by its proximity to the other fixed point, or pass through the latter 
to become a homoclinc orbit. To satisfy the initial condition at 5 + -a, attractors 
can be accepted as valid solutions of (4.3) only if their passage to HI is not blocked 
by any of the singular planes. 

It suffices to discuss the stability properties of two fixed points in the regime of 
SW-instability 0 < cot%/R < 1; in the regime of SW-stability both fixed points 
are always unstable and do not undergo any Hopf bifurcation. Further, within the 
SW-instability regime it is only necessary to consider the range of c between c = 1 
(where HII  first emerges) and the singularity branch 9 (see figure 5). When c lies 
above the singularity branch 9, neither Hopf bifurcations nor heteroclinic orbits are 
possible because between the two fixed points, both of which are unstable saddle- 
nodes according to numerical solutions of (6.4), there are always two singular planes, 
H;l) and Hi2) (see figure 4). When c < 1, there is only one fixed point HI which does 
not give rise to any limit cycles through Hopf bifurcation (see figure 6a). 

In the following, we discuss the implications of eigenvalue properties for We = 1 
and for two Reynolds numbers: R = 1/0.075 = 13.33 and R = 100. 

8.1. We = 1, R = 1/0.075 = 13.33 
The eigenvalue properties of the first and second fixed points are displayed in figures 
7(a) and 7(b), respectively. The neighbourhoods of the point of neutral stability are 
magnified in figures 8(a) and 8(b). The Hopf-bifurcation thresholds are shown by 
QN and VN. The transcritical bifurcation boundary, c = 3, is marked by PN. The 
boundaries dividing saddle-spirals from saddle-nodes are shown for HI as ML and 
OR in figure 7(a), and IJK and KN in figure 8(a), according to (8.1). For HII similar 
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FIGURE 8. (a) Enlarged figure 7(a) near neutral stability. ( b )  Enlarged figure 7(b )  

near neutral stability. 

boundaries are shown by TS in figure 7(b), and HGF and HN in figure 8(b). The 
singularity boundary 9#(w 3.42760) for HI in figure 7(a) is represented by WZ and 
is horizontal since the Weber number is fixed (see figure 5). Two other singularity 
boundaries a2 and 9 are outside the range of the plot (again see figure 5) .  Determined 
in accordance with figure 5, the range of c where the singular plane does not intrude 
in between the two fixed points is marked by the double-headed arrow (1 < c < c(B)) .  
It is convenient to discuss the two ranges of wavespeed, c < 3 and c > 3, separately. 

8.1.1. c < 3 
Consider first the triangular area PNQ, where c lies below c = 3 and above 

the Hopf-bifurcation threshold extending over the whole regime of SW-instability, 
0 < cot 8 / R  < 1. In this triangle, the first fixed point is either a stable saddle-spiral 
(2, < 0, Re(&, &) < 0) in region PJKNQ or a stable node (A1 < O,& < 0, A.3 < 0) in 
region JKN. In the same triangle Hzl is either a saddle-spiral with stable plane focus 
(Al > 0, Re(A.2,23) < 0) or a saddle-node with stable plane node (2, > O,& < 0, A3 < 0) 
as shown in figures 7(b) and 8(b). Since there is no singular plane between the two 
fixed points, the one-dimensional unstable manifold of Hzz must intersect the three- 
dimensional stable manifold of HI somewhere in the phase space, and a heteroclinic 
orbit rising from HII to H I ,  denoted as HII /* HI ,  is therefore possible. 
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Slightly below the Hopf-bifurcation threshold, HI becomes unstable and may bi- 
furcate supercritically to a limit cycle. If c is decreased further, these limit cycles may 
undergo more complicated bifurcations. Since H I  and HII  remain unstable in the 
region below the Hopf threshold, no heteroclinic orbit is possible. Nevertheless the 
limit cycle (or any possible attractor bifurcating from it) is an acceptable continuous 
solution which can be connected to HI at 5 -+ -a and satisfies the initial condi- 
tion. These speculations will be confirmed by numerical solutions of the nonlinear 
system (4.3). 

8.1.2. c > 3 
Note that at cotB/R = (cotO/R); fi: 0.9022 the singularity boundary 92 in fig- 

ure 7(a) coincides with the Hopf-bifurcation threshold for HII at X in figure 7(b). 
In the shaded trapezoidal region WPNX bounded below by c = 3 and above partly 

by the Hopf-bifurcation threshold for HII  and partly by the singularity boundary 92, 
Hll is a stable saddle-spiral in region WXNHGP (see figures 7b and 8b together) and 
a stable node in region NHG (figure 8b). As shown in figures 7(a) and 8(a), HI is 
either an unstable saddle-spiral with stable plane focus or a saddle-node with stable 
plane node in the same trapezoid. Therefore a heteroclinic orbit rising from HI to H I I ,  
denoted as HI 7 Hll,  is possible. In the triangle VWX (figure 7b), where two fixed 
points are separated by the singular plane HiC') (see figure 4a), no smooth heteroclinic 
orbit is possible. 

In the polygonal region VNST (figure 7b), which is bounded below by the Hopf- 
bifurcation threshold for HZZ and above by TS, we need only consider the lower 
triangle XNZ below the singularity boundary 92, where attractors, if any exists, 
bifurcating from Hll can be connected to HI as 5 + --GO. The region above TS can 
be disregarded because of the intruding singular plane. 

For all We > WL1) = 0.7072 the singularity boundary 92 always lies above c = 3 
(see figure 5). As the Weber number increases, 92 in figure 7(a) rises with increasing 
c in the cot B/R versus c plane. Consequently, the regions of possible heteroclinic 
orbits as well as attractors that can be connected to HI expand. By demanding the 
simultaneous satisfaction of both the Hopf-bifurcation threshold conditions (7.2) for 
HII  and the singularity condition (5.2) for HI at cotO/R = 0, we find numerically 
that, at We fi: 4.3754, the singularity boundary 99 (c rn 5.50529) rises to touch the 
leftmost end (V) of the Hopf-bifurcation threshold for HII (VN). Therefore, whenever 
We > 4.3754, 99 lies above VN in the whole regime of SW-instability. Then, any 
limit cycle newly emerging from HII  via Hopf bifurcation can be connected to HI at 
5 -+ -a to form a continuous orbit. Also a smooth heteroclinic orbit may exist for 
any c and cot O/R in the corresponding triangular region VPN in figure 7(b). However, 
attractors that arise from further bifurcations of limit cycles cannot form continuous 
solutions if their speed c exceeds ~(92). On the other hand, whenever We < 4.3754 
(e.g. the present case in figure 7b),  the range of cotB/R for which attractors from 
HII  can be connected to HI is restricted within (cot B/R); < cot O/R < 1. The range 
of possible existence of heteroclinic orbits is also diminished to the corresponding 
trapezoidal region WPNX in figure 7(b). 

8.2. We = 1, R = 100 
We next raise the Reynolds number to R = 100. The eigenvalue behaviour of two 
fixed points is shown in figures 9(a) and 9(b). Note that parameter boundaries such 
as the Hopf-bifurcation thresholds, c = 3 and the singularity in the cot B/R versus c 
plane remain the same as those in the previous case, while the loci of double roots 
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FIGURE 9. Eigenvalue behaviour of fixed points for We = 1, R = 100. (a )  HI, (b) H I I .  

The shaded areas are regions of heteroclinic orbits. 

OR and TS respectively approach c- and c+ where a 2  = 0, while ML becomes almost 
indistinguishable from the singularity boundary WZ. Note also that, at this larger 
Reynolds number, the regions of saddle-node or stable node in the neighbourhood 
of neutral stability shrink in size. Otherwise all conclusions of the previous case 
of R = 13.33 still apply. The qualitative trend continues for still higher Reynolds 
numbers (up to 1000 by our computation). 

Although omitted here, our numerical findings indicate that as the Weber number 
is reduced (or increased), the region of heteroclinic orbits gradually diminishes (or 
expands), and so does the span of Hopf-bifurcation thresholds. These phenomena are 
caused by approaching (or moving away from) singularities and are already evident 
from figures 4, 5 and 6. 

Guided by the linear analysis in this section, we next examine the results of 
numerical experiments by integrating the nonlinear system (4.3). 

9. Numerical study of bifurcation scenarios 
Based on the insight gained in the previous section, extensive numerical simulations 

of the third-order dynamical system (4.3) have been performed for different flow rates 
with R = 13.333 = 1/0.075, 100, and 1000 over a wide range of We (< 10). For each 
set of We, R and cot 8, the propagation speed of the permanent wave c is continuously 
increased or decreased from the transcritical bifurcation point c = 3 to search for 
either heteroclinic orbits or other nonlinear attractors in phase space. Consistent with 
the linearized stability analysis of $8, no nonlinear attractor has been found in the 
regime of SW-stability, cot 8/R 2 1, for any fixed Weber and Reynolds numbers. This 
is so because both fixed points are unstable and do not undergo any Hopf bifurcation. 
Therefore we shall consider only the regime of SW-instability 0 < (cot 8/R)  < 1. 
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A commercial dynamical systems software, INSITE,? has been used for numerical 
simulations. For numerical stability, Gear’s implicit integration scheme is adopted 
which allows the user to control the numerical accuracy and time step by specifying 
the local error bounds. In our simulations, bounds for both absolute and relative 
error are set between and and found to be sufficient. 

In the range 0 d cot O/R < 1, the predicted existence of heteroclinic connection 
from linear analysis has been confirmed by integrating the nonlinear system. These 
orbits indeed leave from the unstable fixed point along the one-dimensional unstable 
manifold associated with the positive real eigenvalue 2: and approach the stable fixed 
point along the one-dimensional stable manifold associated with the negative real 
eigenvalue 2;. As a result the heteroclinc orbits do not undergo oscillations when 
approaching the stable fixed point. Numerical integration is performed by simply 
putting the initial phase point in the vicinity of the unstable fixed point. It is only 
necessary to present sample results for We = 1, R = 100 and cot@/R = 0.3. As 
suggested by the shaded zone F in figure 7(a), for any wavespeed c above the Hopf 
threshold for HI but below 3.0, the case of c = 2.5 is typical. There is a heteroclinic 
orbit going from H I I  to HI ( H I /  /1 H I ) ;  its phase portrait is shown in figure 10(a) and 
the wave profile in figure 10(b). In the phase portrait the first fixed point HI is marked 
by a cross (x), and the second fixed point HI/  by a triangle (A). figure 7(b) (see the 
shaded zone WPNX) suggests that for any c above 3.0 but below the singularity 
boundary g ( c  = 4.82032), there is then a heteroclinic orbit going from HI to HI1 

( H I  7 H I / ) .  The phase portrait and the wave profile are very similar to those in 
figure 10(a,b) and are omitted. 

We now direct attention to the much more interesting bifurcation scenarios beyond 
the Hopf threshold. 

When one of the fixed points begins a supercritical Hopf bifurcation, which occurs 
for the first fixed point HI (or the second fixed point H I / )  when c is slightly decreased 
(or increased) from the Hopf-bifurcation threshold, we put the initial phase point 
in the neighbourhood of that fixed point. To reduce numerical work, whenever an 
attractor emerges in the phase space, we relocate the initial phase point next to this 
attractor and then pursue its subsequent bifurcations. All integrations are carried out 
for sufficiently long time until the trajectories finally settle down on the attractor. 
We terminate the simulation at the point where no attractor could be detected when 
the bifurcation pararmeter c is slightly varied by a magnitude between lop7 and 
lop9 depending upon the case. Outside the bifurcation range of c where nonlinear 
attractors exist, the phase trajectories are drawn towards one of the singular planes 
and lead eventually to infinities (e.g. the region below OR in figures 7a and 9a; part of 
the region XNZ in figures 7b and 9b). This is shown in figure 4, where for We > Wj3), 
two fixed points are always sandwiched by H!’) and Hi2) in 1 < c < ~(’3). For clarity, 
the transient start from HI towards the attractor has been deleted in all the following 
presentations. 

For a specific set of We, R and 8, the bifurcation diagram for the permanent wave 
is constructed by choosing all the local maxima H, of the time series for the flow 
depth H as the representative points, which are then plotted against the bifurcation 
parameter c. In such a diagram, a limit cycle appears as a single representative point, 
and a period-2 limit cycle as two representative points of differing height, etc. To 
examine the shape of the attractor in phase space and the wavelength-wavespeed 

t INSITE is the acronym for ‘Interactive Nonlinear Systems Investigative Tools for Everyone’, 
developed by L.O. Chua & T.S. Parker. 
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dispersion relationship during the bifurcation, we shall also present some phase 
portraits of the attractors and time series of the flow depth for selected values of c . 

Bifurcation scenarios beyond the Hopf thresholds are more complicated and 
strongly dependent upon all physical parameters involved. While numerical experi- 
ments have been performed for R = 13.33, 100 and 1,000, it is sufficient to present 
some results for the first two Reynolds numbers. 

9.1. Bifurcations from the primary $ow HI 

9.1.1. Moderate Reynolds number, R = 1/0.075 m 13.33 
From extensive studies over a wide range of Weber numbers, We d 10, we have 

uncovered four different bifurcation scenarios : (a )  simple homoclinic bifurcations in 
which the limit cycle from HI undergoes an infinite-period bifurcation to become 
a homoclinic orbit passing through HII ; (b )  multiple-hump homoclinic bifurcations in 
which the limit cycle first undergoes a series of period-doubling before a homoclinic 
bifurcation takes over which eventually leads to an n-hump ( n  2 1) homoclinic 
orbit passing through HII ; (c) cascades of period-doubling bifurcations that lead to 
chaos; and ( d )  limit cycles. We have numerically determined the boundaries separating 
regimes of different bifurcation scenarios in terms of cot 8 / R  for each W e ;  results for 
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FIGURE 11. Bifurcation scenarios for H I .  (a) R = 1/0.075 = 13.33. (b )  R = 100. 

a wide range of We < WL2) are summarized in figure ll(a). In the same plot we also 
mark the curve of (cot B/R)- to the right of which no Hopf-bifurcation thresholds 
and therefore no attractors exist (see figure 6). 

When We > WL2)(= 0.6), where the Hopf-bifurcation threshold extends throughout 
the entire regime of SW-instability, the limit cycle either undergoes homoclinic bifur- 
cations or period-doubling bifurcations. Homoclinic bifurcations dominate over most 
range of cot 8 /R  for smaller Weber numbers, whereas period-doublings prevail for 
larger Weber numbers. When We < WL*), the Hopf-bifurcation threshold only exists 
in 0 < (cot B/R) < (cot B/R)- due to the intrusion of a singular plane in between 
two fixed points (see figure 4). No homoclinic bifurcation is possible. Instead, in the 
neighbourhood of (cot B/R) -, only limit cycles survive without further bifurcations. 
For extremely low surface tension, only limit cycles are possible. 

We only present in the following the typical bifurcation sequences for We = 1 for 
a set of descending cot 8 / R  from neutral stability (increasing slope). 

(a) cot 8 /R  = 0.7: Simple homoclinic bifurcation 

Recall that for the first fixed point H I ,  the Hopf-bifurcation threshold spans the 
whole regime of SW-instability, 0 < cot 8 / R  < 1 (cf. figures 7a and lla). Furthermore, 
below the Hopf-bifurcation threshold, no singular plane intrudes between HI and 
H I I .  Numerical experiments indicate that in the close neighbourhood of neutral SW- 
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FIGURE 12. Selected bifurcation diagrams for We = 1, R = 1/0.075 = 13.33. (a) cotO/R = 0.7, 
simple homoclinic bifurcation. (b)  cot O /  R = 0.5, period-doublings leading to simple homoclinic 
bifurcation. ( c )  cot O/R = 0.45, three-hump homoclinic orbit emerging in the end. ( d )  cot O/R = 0, 
period-doubling bifurcations leading to chaos. 

stability (see figure 8), limit cycles from HI undergo a homoclinic bifurcation to 
become a homoclinic orbit passing through HI1 which is of the saddle-node type. 
With further reduction of cot 8 /R  away from neutral stability, the homoclinic orbit 
passes through H I /  of saddle-spiral type. Strict homoclinicity is difficult to achieve 
numerically, hence the calculated profile is a train of periodic waves with very long 
periods. Within each period there is a prominent peak which possesses front-running 
ripples if HI1 is a saddle-spiral. 

For the case of cot 8/R = 0.7 under study, the Hopf-bifurcation threshold is approx- 
imately at c = 2.75188 from (7.2). The bifurcation diagram is shown in figure 12(a). 
Corresponding to the starting (upper) primary branch in figure 12(a), the limit cycle 
increases its amplitude and wavelength as the bifurcation parameter c is reduced. 
The lower secondary branch in figure 12(a), which first appears at approximately 
c = 2.72292, corresponds to small ripples between consecutive wavefronts. Judging 
from the position of HI* (4.8) in phase space, which is a saddle-spiral with a stable 
plane focus (figure 7), clearly this secondary bifurcation branch arises because the 
orbit structure of the growing limit cycle is affected by approaching HII. At near- 
homoclinicity c = 2.7212292264 (figure 13a), a homoclinic orbit is formed which 
slowly rises from H I I ,  winds around HI and then returns to H I / .  The wave profile 
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FIGURE 13. Selected phase portraits and corresponding wave profiles near the end of bifurcations for 
We = 1, R = 110.075 
(c) cot BIR = 0.45, c = 2.51029995. ( d )  cot BIR = 0, c = 1.90988. 

13.33. (a)  cot BIR = 0.7, c = 2.7212292264. ( b )  cot BIR = 0.5, c = 2.5102077. 

is a series of well-separated solitary waves with steep wavefronts and a mild sloping 
back possessing rippled tails. The profile strongly resembles those observed in the 
tube experiments of Kapitza & Kapitza (1949) and the plane experiments of Liu & 
Gollub (1993, 1994). In the numerical experiments, strict homoclinicity with infinite 
period cannot be achieved, but the trend demonstrated in figure 12(a) is clear. 

see also Wiggins 1990 
or Guckenheimer & Holmes 1983) complicated and chaotic dynamics occur in the 
neighbourhood of a homoclinc orbit passing through a fixed point of saddle-spiral 
type with stable plane focus, if the magnitude of the real eigenvalue is greater than the 
magnitude of the real part of the complex eigenvalue pair. From (6.5) the condition 

According to the well-known Sil'nikov theorem (1965; 
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amounts approximately to 

at the fixed point passes by the homoclinic orbit. In the present case the eigenvalues 
of H I I  at near-homoclinicity are [A, = 0.073234, Re(&,&) = -0.703331, which do not 
satisfy the Sil'nikov criterion, hence no complex dynamics follows. 

(b) cot U/R = 0.5: Period-doublings + simple homoclinic bifurcation 

Further away from the threshold of SW-instability, the bifurcation scenario becomes 
more complicated. The limit cycle from HI undergoes cascades of period-doubling 
bifurcations before finally yielding to a simple homoclinic bifurcation with a one-hump 
homoclinic orbit passing through H I / .  From (7.2), the Hopf-bifurcation threshold is 
estimated to be c = 2.57755. The bifurcation diagram is shown in figure 12(b). The 
phase portrait of the final attractors and the corresponding wave profile are shown 
in figure 13(b). 

As seen in figure 12(b), as c decreases from the Hopf-bifurcation threshold, the 
limit cycle from HI first undergoes a series of period-doubling bifurcations to become 
a chaotic attractor. Then through another series of period-halving bifurcations, the 
chaotic attractor evolves into a periodic attractor once again. In fact, there are many 
cascades of such period-doubling and period-halving bifurcations occurring repeat- 
edly in different ranges of c to create intermittant chaotic zones. Embedded within 
the chaotic zones are some periodic windows created by period-halving bifurcations 
which contain periodic orbits of odd or even periods. Some of these windows are 
evident, such as the period-3 limit cycle in the interval 2.523 < c < 2.528. These phe- 
nomena are typical of many nonlinear dynamical systems (e.g. the Lorenz and Rossler 
systems). In addition, the isolated secondary bifurcation branches in the lower part of 
the bifurcation diagram figure 12(b), which correspond to the small ripples in the wave 
profile, also undergo their own complicated period-doubling bifurcations. Only near 
the end of the bifurcation sequence (roughly when c < 2.544), is there a period-1 limit 
cycle emerging from a period-halving bifurcation, yielding a one-hump homoclinic 
orbit. At near-homoclinicity c = 2.5102077 (figure 13b), the attractor passess through 
HII at which the eigenvalues are [A, = 0.0970039, Re(i/2,23) = -0.6912721. Sil'nikov's 
criterion is again not satisfied. 

(c) cot U/R = 0.45 : Multiple-hump homoclinic bifurcations 

As the value of cotU/R is further decreased, the limit cycle from HI eventually 
undergoes a homoclinic bifurcation which leads to a multiple-hump homoclinic orbit 
passing through H I / .  Such bifurcations are always preceded by complicated cascades 
of period-doubling and period-halving bifurcations. Indeed a period-n (with n > 1) 
limit cycle must appear first before it can undergo a homoclinic bifurcation and 
become an n-hump homoclinic orbit. In the following, we present just one such case 
for cot U/R = 0.45 which leads to a three-hump homoclinic orbit. We have also found 
that at cot O/R = 0.44 a six-hump homoclinic orbit results; details are omitted here. 

Figure 12(c) shows the bifurcation diagram, where the Hopf-bifurcation threshold 
is estimated to be c = 2.53314. Similar to the previous case shown in figure 12(b), 
numerous periodic windows are sandwiched by sequences of period-doubling and 
period-halving bifurcations. The phase portrait of the final attractor during the 
bifurcation and its corresponding wave profile are shown in figure 13(c). At near- 
homoclinicity c = 2.5 1029995, there emerges a three-hump homoclinic orbit passing 
through HI/ ,  which is still a saddle-spiral with stable plane focus. The eigenvalues 

a 3  < -alp2 (9.1) 
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of HII at near-homoclinicity are [A, = 0.100266,Re(A2,A3) = -0.6890831, which does 
not satisfy Sil'nikov's criterion. 

Multiple-hump homoclinic orbits were first discovered for film flows at low 
Reynolds numbers R = 0(1) and large surface tension We = 0(ep2) by Pumir 
et al. (1983) for flows on an inclined plane and Nakaya (1989) for vertically falling 
flows, who numerically constructed such waves in the long-wave equation of Benney 
(1966). Chang et al. (1993) also presented such solutions in the case when both 
Reynolds and Weber numbers are large (R = O ( E - ~ ) ,  We = 0(c2)).  

(d) cot 8/R = 0: Period-doubling bifurcations towards chaos 

As the value of cot 8/R is further decreased from 0.44 (see figure l la) ,  no homo- 
clinic bifurcations for the limit cycles from HI can be found throughout the bifurcation 
processes. Instead, period-doubling bifurcations leading to a chaoic attractor become 
the dominant scenario. This is not surprising, since from 53 a smaller cot 8/R corre- 
sponds to a more unstable regime, where higher growth rates of perturbations quickly 
contribute to the chaotic appearance of the free surface. However, as evidenced from 
previous cases, the detail of each bifurcation process at a fixed cot 8/R has its own 
peculiar characteristics. With cot 8/R further reduced, approach from period-doubling 
to chaos is more rapid. For brevity, we only present results for the special case of 
cot 8/R = 0 (vertical wall) here. 

We show in figure 12(d) the bifurcation diagram; the phase portrait of the final 
attractor and its corresponding wave profile are shown in figure 13(d). The Hopf- 
bifurcation threshold is estimated to be c = 2.1385. As the bifurcation unfolds, the 
representative points grow in both number and range. Intermittent windows can still 
be seen in the bifurcation diagram. The fixed point HI is totally immersed in the 
chaotic trajectories (see figure 13d). 

We next turn to R = 100. 

9.1.2. Fairly large Reynolds number: R = 100 
As the Reynolds number is increased to R = 100, period-doubling bifurcations 

rapidly expand to most of the range of cot 8/R where a Hopf bifurcation exists. For 
instance, at We = 1 and R = 100, we numerically determine that the homoclinic 
regime resides only within a narrow strip 0.97 < cot 8/R < 1, whereas the period- 
doubling regime extends over 0 < cot@/R < 0.97. For a wide range of We the 
bifurcation scenarios are summarized in figure ll(b). In comparion to the previous 
case for lower Reynolds number (cf. figure l la) ,  the homoclinic regime has retreated 
to the close neighbourhood of neutral stability in We > WL2), while the limit-cycle 
regime has also diminished towards the vicinity of (cot 8/R)- in We < Wi2). These 
trends continue as the Reynolds number is increased further to R = 1000. 

We next turn to the bifurcation scenarios of the limit cycles from H I / .  

9.2. Bifurcations from HII  
For H I I ,  we need only consider We > W,")(= 0.6), since otherwise the passage from 
HII to HI is blocked by a singular plane as HII  undergoes a Hopf bifurcation (see 
figure 4). Again, we discuss R = 1/0.075 FZ 13.33 and R = 100 separately. 

9.2.1. Moderate Reynolds number R = 1/0.075 FZ 13.33 
According to figure 7(b), only for (cot 8/R); < cot 8/R < 1, and for c lying below 

the singularity boundary B, can any attractors bifurcating from HII  be connected 
smoothly to HI and constitute acceptable solutions to (4.3). Recall that (cot B/R); 
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FIGURE 14. Bifurcation scenarios for H I , .  (a) R = 1/0.075 FZ 13.33. (b)  R = 100. 

depends only on We, but not on R. As We is increased, the range of cotO/R for 
acceptable solutions quickly expands. 

For R x. 13.33 and W:*)(= 0.6) < We < 10, figure 14(a) summarizes the different 
bifurcation scenarios in the We versus cotO/R plane; (cotO/R): is also shown as 
a dashed curve. As in the case of HI,  there are three distinct bifurcation regimes: 
homoclinic, period-doubling and limit cycles. Homoclinic bifurcations here lead to 
homoclinic orbits passing through HI. However, unlike HI in figure 11, HI1 in 
the limit-cycle regime still undergoes period-doubling bifurcations leading to chaos. 
Nonetheless, among all these attractors, only the limit cycles with small enough 
propagation speed, c < c(B), can be connected to HI and constitute acceptable 
solutions. From figure 14(a), as the Weber number is increased, period-doubling 
bifurcations prevail over the homoclinic and limit-cycle regimes. Conversely, as the 
Weber number is decreased towards W,")(= 0.6), the influence of the singularity 
(cot O/R); gradually becomes evident until eventually HII cannot be connected to 
HI in the whole regime of SW-instability; therefore no continuous solutions are 
possible. 

We next present some typical results for We = 5. Solutions connecting HI to 
attractors emanating from HI1 exist in the whole regime of SW-instability, 0 < 
cot O/R < 1. We find that the homoclinic regime resides in 0.92 < cot O/R < 1; the 
period-doubling regime exists in 0.38 < cot O/R < 0.92; and the limit-cycle regime is 
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FIGURE 15. Selected bifurcation diagrams for We = 5, R = 1/0.075 = 13.33. (a)  cotO/R = 0.99, 
simple homoclinic bifurcation leading to a one-hump homoclinic orbit. ( b )  cot O/R = 0.93, pe- 
riod-doublings leading to two-hump homoclinic orbit. ( c )  cot O/R = 0.7, period-doublings leading 
to chaos. ( d )  cot O/R = 0.3, limit cycles 

in 0 < cot 9/R < 0.38. Shown in figure 15 are several typical bifurcation diagrams of 
the three different bifurcation scenarios. In figure 15(a) where cot 9/R = 0.99, the limit 
cycle from HII undergoes a sequence of period-doublings and period-halvings, before 
a sudden jump that eventually settles to a one-hump homoclinic orbit passing through 
H I .  Since the eigenvalues at HI are such that [A, = 0.043838, Re (12, A,) = -0.08801 11, 
the Sil'nikov criteron is not satisfied. In figure 15(b) where cot B/R = 0.93, period- 
doubling bifurcations precede a two-hump homoclinic bifurcation. Figure 15(c) where 
cot 9 /R  = 0.7 shows chaos following period-doubling bifurcations. In figure 15(d)  
where cot 9 / R  = 0.3, the limit cycle from  HI^ obviously undergoes period-doubling 
bifurcations. However, solutions connecting to HI occur only in c < c($) (c  = 5.78) 
which are only limit cycles. The phase portraits and wave profiles can be qualitatively 
inferred by analogy with figure 13. 

9.2.2. Fairly large Reynolds number, R = 100 
For brevity, we only display the computed boundaries of bifurcation scenarios in 

figure 14(b). In comparision with figure 14(a) for the lower R = 1/0.075 w 13.33, all 
bifurcation-scenario boundaries shift towards neutral stability. The homoclinic regime 
is now negligibly small. The extent of the limit-cycle regime also grows, indicating that 
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as the Reynolds number increases, the bifurcation range of c for nonlinear attractors 
to exist also increases. These trends continue as R is further increased to R = 1000. 

10. Comparison with experiments 
As pointed out before, the majority of past experiments on finite-amplitude waves 

concern falling water films along vertical circular cylinders of limited length. For 
example periodic waves were recorded by Stainthorp & Batt (1967) in the top 4 
to 58 cm of a 76 cm long tube, and by Jones & Whitaker (1966) in the top 6 to 
8 cm of a 45 cm long tube. Since these observations may still be in the transient 
stage of development while our theory corresponds to the asympotic state of large 
time or fetch for films on a plane, definitive comparisions are difficult. Furthermore, 
in these experiments surface tension is rather strong (usually We > 20). With these 
reservations we now compare our calculations for each R, the highest period-1 waves 
taken at the threshold where the first fixed point HI bifurcates to a period-2 limit 
cycle (represented as the solid curve in figure 16). Also included for comparision 
are the theoretical predictions by Lee (1969), who solved the weakly nonlinear 
permanent wave equation valid for R = O(e-') and We = O ( F - ~ )  by a perturbation 
technique, and by Massot, Irani & Lightfoot (1966), who solved a similar weakly 
nonlinear permanent wave equation with an additional criterion of least viscous 
dissipation. Our theory fits the measurements better than those of Lee and Massot 
et al. on wave amplitude (figure 16a) and propagation speed (figure 16b) . However 
the predicted wavenumber is still much higher than that observed (figure 16c). The 
partial success is encouraging, given the differences between the experimental setting 
and the theoretical assumptions : such as the geometric configurations, the artificially 
introduced perturbations ; the transientness of wave overtaking and coalescence; and 
the magnitude of surface tension. 

For nonlinear bifurcations, period-doubling has been reported by Takahama & 
Kato (1980), who recorded the dominant wave frequencies at fixed stations along a 
circular cylinder. In the recent experiments by Liu & Gollub (1993,1994) for films 
on a slightly inclined plane, forced perturbations were introduced at the entrance in 
order that regular two-dimensional waves appear. The Weber numbers are in the 
range of 3 < We < 33. Within the first 100 cm forced waves give rise to period-1 limit 
cycles if the forcing frequency f is greater that fs, but to separated solitary waves 
i f f  < fs. Further downstream (12CL160 cm) of the entrance, they found a different 
frequency threshold f 2  separating side-band instability (f > f 2 )  from subharmonic 
instability (f < f2). When sideband instability prevails, i.e. f > f2,  forced waves 
turn chaotic further downstream; the frequency spectrum becomes broad-banded by 
sidebands of noise surrounding the forcing frequency. When the subharmonic insta- 
bility prevails, i.e. f < f2, periodic waves undergo a spatial period-doubling before 
complicated coalescence and splitting processes take over and lead to chaotic waves. 
In figure 17, we cite their results for an aqueous solution of glycerin (54% by weight) 
flowing down an inclined plane (0 = 6.4") with 3 < We < 30 and 7 < R < 25. The 
solid curve (fn) denotes the forcing frequency for neutral stability determined from 
numerical solutions of the Orr-Sommerfeld equation and verified experimentally. For 
comparison the approximate threshold according to (3.6) is shown by f-. Our theor- 
etical threshold f+ for period-doubling of spontaneously unstable waves originated 
from Hopf bifurcation is seen to be in qualitative agreement with the measured f2 .  

This crude agreement must be taken with caution since the forced waves in the 
experiments are not strictly stationary. The solitary waves predicted here resemble 
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FIGURE 16. Comparison between nonlinear theories and experiments for finite-amplitude waves on 
the surface of vertical water film: -, present theory; - -, theory of Lee; - - -, theory of Massot 
et al.; A, expt. by Kapitza & Kapitza; 0, expt. by Jones & Whitaker; +, expt. by Stainthorp & 
Batt. (a) Phase speed c, (b)  the dimensionless amplitude A, and (c )  wavenumber e versus R. 

the observations of Liu & Gollub. However the theoretical results are found only 
near neutral stability for relatively low Reynolds numbers R < 10, while observations 
were made for 18 < R < 30 with forcing frequencies much different from the natural 
frequency of the most unstable wave. Direct comparison cannot be made here. 

For chaotic waves of large amplitude further downstream, experimental data in 
terms of statistical properties of vertically falling films can be found in Chu & Dukler 
(1974, 1975) and Yu et al. (1995). Although conducted on a circular cylinder of 
finite radius, the data by Yu et al. (50 < R < 300, 0.3 < We < 7) are the closest 
to our theory and will be used for comparison. Shown in figure 18(a) are measured 
wave speed versus the Reynolds number. Analytical predictions of Hopf thresholds 
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(periodic waves) and the numerically computed limiting speed for chaotic waves from 
our theory are compared with the measured velocity of chaotic waves of Yu et al. 
The observed wavespeeds generally fall between these two thresholds. The theoretical 
results of Yu et al. are also included. Figure 18(b) compares our theory and the 
experiments on the RMS of the chaotic film thickness for a range of Reynolds 
numbers. Taking into account the difference in geometries, our theory performs no 
worse than the theory by Yu et al. based on a heuristic equation, though with a 
higher-order approximation of the velocity profile. 

Since in most existing experiments the Reynolds number is not very high, and 
Weber number not very low, definitive comparisons with the present theory or its 
extensions should await a combination of new efforts which include new calculations 
by numerically solving nonlinear initial-boundary value problems for forced waves, 
and more experiments for naturally falling films down a long plane at large Reynolds 
and small Weber numbers. As an estimate for the plane length we may take a 
water film inclined at 8 = (lo, lo"); the Reynolds numbers will be sufficiently large 
R - (400,200) if We = 1. To observe nonlinear evolutions fully the dimensionless 
plane length should be at least Lc,/ci where c, and ci are the real and imaginary 
parts of the phase velocity for the most unstable waves and can be found by solving 
(3.4). Estimating the wavelength to be L = 2 cm, c, = 3 and ci = (0.005,0.015) 
corresponding to the two slopes, we find the plane length to be at least 0(12,4) m 
respectively. Also, in existing experiments the upstream discharge is maintained at the 
same value, hence bifurcations can only emerge from the uniform state H I .  To check 
experimentally the attractors bifurcating from HII the upstream discharge must be 
suitably changed at one point during the experiment. 

11. Concluding remarks 
In this paper, we have studied theoretically the finite-amplitude waves of stationary 

form on a thin film of viscous fluid flowing down an inclined plane. Focusing on 
the laminar flow at rather high Reynolds numbers, and moderate Weber numbers, 
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we employed approximate equations accurate to the second order in the depth-to- 
wavelength ratio. In the frame of reference moving with the steady wavespeed, the 
approximate equations reduce to a third-order dynamical system. In the regime where 
sinusoidal waves are linearly unstable, uniform flows, corresponding to the fixed 
points of the reduced system, may undergo Hopf bifurcations. Detailed local analysis 
and numerical integration of the dynamical system have revealed complex bifurcation 
scenarios after the onset of limit cycles. Different types of stationary wave profiles 
have been found, but their stability has not been investigated. 

Comparions of the linearized part of the theory with experiments for infinitesimal 
waves show reasonable agreement, despite the approximation of Karman type. For the 
nonlinear aspects some comparisons are made with partial success. Strict comparison 
requires either theoretical calculation of the transient and spatial evolution of waves 
forced upstream, or new experiments for naturally formed waves far downstream of a 
long plane. A shortcoming of the present theory is the singularity of the approximate 
equations. In a preliminary analysis we have found that by including terms of 0(e4), 
terms proportional to Htcrt arise along with many other nonlinear terms involving 
lower-order derivatives. The two fixed points are still given by (4.7) and (4.8). The 
coefficient of Htrtt vanishes only when H = 0 which corresponds to a dry bed, 
or c < 1 in which there is no H I I .  Thus the singularities encountered at 0 ( e 2 )  
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disappear when 0(c4) terms are added?; and detailed though lengthier analysis of 
the fourth-order dynamical system appears worthwhile. Also since most experiments 
were performed on the surface of a circular cylinder of radius a comparable to 
the wavelength, corresponding typically to ka < 10, new theories accounting for the 
cylindrical geometry by including terms of certain order in (ka)-' are also desirable. 

Direct numerical theories without the momentum integral approximation are of 
course desirable. However current numerical theories require a finite spatial domain 
subject to periodic boundary conditions. These practical limitations may make it 
difficult to study chaotic waves which are aperiodic. Finally, the stability of the 
stationary waves and the spanwise instability observed by Liu et al. (1995) deserve 
theoretical investigation. 

This research is a byproduct of a study on mud flow supported by the US National 
Science Foundation Natural Hazards Mitigation Program (Grant BCS 91 12748) and 
US Office of Naval Research Ocean Engineering Program (Grant N00014-89-J-3 128). 
We are grateful to Dr Frtdkric Dias of the University of Nice, France, for helpful 
comments that led to significant improvement in $8. 
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